

Biosafety Clearing-House (BCH)

LIVING MODIFIED ORGANISM (LMO)

BCH-LMO-SCBD-48362-8

? Decisions on the LMO ? Risk Assessments

LAST UPDATED: 29 APR 2020

EN

Living Modified Organism identity

The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links

 Page.

 https://bch.cbd.int/database/record?documentID=48362

 BPS-PHØ48-1

 Fortuna potato

 Read barcode or type above URL into intermet browser to access information on this LMO in the Biosafety Cleaning-House & SCBD 2012

 Name

 Fortuna potato
 EN

 Transformation event

PH05-026-0048

Unique identifier

BPS-PHØ48-1

Developer(s)

- PERSON: BASF PLANT SCIENCE GMBH | BCH-CON-DE-48128-3

PERSON

BASF Plant Science GmbH Carl-Bosch-Str. 38 Ludwigshafen 67056 , Germany Phone: +49 621 60-0 Fax: +49 621 60-42525 Email: global.info@basf.com Website: http://www.basf.com/group/corporate/de/products-and-industries/biotechnology/ plant-biotechnology/index

Description

The potato was modified for resistance to *Phytophthora infestans* through the expression of the resistance (R) genes *Rpi-blb1* and *Rpi-blb2* from a wild relative *Solanum bulbocastaneum*.

The R genes encode nucleotide-binding site-leucine rich repeat type proteins and play a role in host defence against the pathogenic fungus.

Additionally, a selectable marker, *Arabidopsis thaliana* acetohydroxyacid synthase, was included for imidazolinone selection during transformation. The enzyme carries a point mutation, S653N, which confers herbicide tolerance.

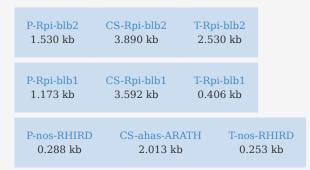
Recipient Organism or Parental Organisms

The term "Recipient organism" refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas "Parental organisms" refers to those that were involved in cross breeding or cell fusion.

BCH-ORGA-SCBD-12106-6 ORGANISM | SOLANUM TUBEROSUM (POTATO, SOLTU)

Crops

Characteristics of the modification process


Vector

Vector VCPMA16 derived from pPZP200

Techniques used for the modification

Agrobacterium-mediated DNA transfer

Genetic elements construct

Introduced or modified genetic element(s)

Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.

BCH-GENE-SCBD-41318-3 PHYTOPHTHORA INFESTANS RESISTANCE GENE 2 | (ORNAMENTAL

NIGHTSHADE, POTATOES)

Protein coding sequence | Resistance to diseases and pests (Phytophthora infestans resistance)

BCH-GENE-SCBD-41317-5 PHYTOPHTHORA INFESTANS RESISTANCE GENE 1 | (ORNAMENTAL

NIGHTSHADE, POTATOES)

Protein coding sequence | Resistance to diseases and pests (Fungi)

BCH-GENE-SCBD-100270-6 NOPALINE SYNTHASE GENE PROMOTER

Promoter

BCH-GENE-SCBD-48073-8 ACETOHYDROXY ACID SYNTHASE GENE | (THALE CRESS)

Protein coding sequence | Resistance to herbicides (Imidazolinone, Sulfonylurea)

ΕN

BCH-GENE-SCBD-100269-8 NOPALINE SYNTHASE GENE TERMINATOR Terminator BCH-GENE-SCBD-103775-1 PHYTOPHTHORA INFESTANS RESISTANCE GENE 2 PROMOTER | (ORNAMENTAL NIGHTSHADE, POTATOES) Promoter BCH-GENE-SCBD-103776-1 PHYTOPHTHORA INFESTANS RESISTANCE GENE 2 TERMINATOR | (ORNAMENTAL NIGHTSHADE, POTATOES) Terminator BCH-GENE-SCBD-103777-1 PHYTOPHTHORA INFESTANS RESISTANCE GENE 1 PROMOTER | (ORNAMENTAL NIGHTSHADE, POTATOES) Promoter BCH-GENE-SCBD-103778-1 PHYTOPHTHORA INFESTANS RESISTANCE GENE 1 TERMINATOR | (ORNAMENTAL NIGHTSHADE, POTATOES) Terminator BCH-GENE-SCBD-101415-9 TI PLASMID LEFT BORDER REPEAT Plasmid vector BCH-GENE-SCBD-101416-6 TI PLASMID RIGHT BORDER REPEAT Plasmid vector

Notes regarding the genetic elements present in this LMO

Expression cassettes:

The insertion contains three gene expression cassettes: *Solanum bulbocastaneum Phytophthora infestans* resistance gene 1 (*Rpi-blb1*), *Solanum bulbocastaneum Phytophthora infestans* resistance gene 2 (*Rpi-blb2*) and *Arabidopsis thaliana* acetohydroxyacid synthase (*ahas*).

Transcription of *Rpi-blb1* and *Rpi-blb2* are under control of the native promoters and
terminators. Transcription of *ahas* is under control of the *Agrobacterium tumefaciens* nopaline
synthase promoter and terminator. The R gene cassettes were originally excised from the
donor genome as genomic fragments and inserted into the vector.EN

The coding sequence of *ahas* contains a point mutation S653N (serine to asparagine at amino acid position 653), which confers herbicide tolerance.

LMO characteristics

Modified traits

Resistance to diseases and pests Fungi Phytophthora infestans resistance Resistance to herbicides Imidazolinone Sulfonylurea Resistance to antibiotics Streptomycin Common use(s) of the LMO

Food

Detection method(s)

Additional Information

Low level of expression of both *Rpi-blb1* and *Rpi-blb2* was detected by real-time PCR analysis in leaves, stems, tubers and roots. In flowers, low expression of *Rpi-blb2 was detected*. However, the expression of *Rpi-blb1* was not detected in floral tissues.

Due to the *nos* promoter, low expression levels in all parts of the plant are expected for *ahas*. Expression of *ahas* was essential for the selection of transformants during tissue culturing.

Additional Information

Additional Information

Vector information

Derivate of pPZP200. Reference: Hajdukiewicz et al (1994) Plant Mol. Biol., 25, 989-994.

Other relevant website addresses and/or attached documents

?07-r42-01-app-a1.pdf (English)

? European Patent Application - EP2535416A1.pdf (English)

BCH-LMO-SCBD-48362-8

Further Information

Questions about the Cartagena Protocol on Biosafety or the operation of the Biosafety Clearing-House may be directed to the Secretariat of the Convention on Biological Diversity. Secretariat of the Convention on Biological Diversity 413 rue Saint-Jacques, suite 800 Montreal, Québec, H2Y 1N9 Canada Fax: +1 514 288-6588 Email: secretariat@cbd.int ΕN