

Biosafety Clearing-House (BCH)

LIVING MODIFIED ORGANISM (LMO)

BCH-LMO-SCBD-105619-1

? Decisions on the LMO ? Risk Assessments

LAST UPDATED: 12 JUN 2014

Living Modified Organism identity

The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links

page.

https://bch.cbd.int/database/record?documentID=105619

SYN-ØØØH2-5 Soy modified for tolerance to Mesotrione and Glufosinate

Read barcode or type above URL into internet browser to access information on this LMO in the Biosafety Clearing-House 👁 SCBD 2012

Name

Soy modified for tolerance to Mesotrione and Glufosinate

Transformation event

SYHT0H2

Unique identifier

SYN-ØØØH2-5

Developer(s)

- ORGANIZATION: SYNGENTA SEEDS GMBH | BCH-CON-SCBD-101875-3

ORGANIZATION

Syngenta Seeds GmbH Private sector (business and industry) Syngenta Seeds GmbH Zum Knipkenbach 20 Bad Salzuflen 32107, Germany Phone: +49 52 22 5308-0 Fax: +49 52 22 5308-12 Email: info.seeds@syngenta.com Website: http://www.syngenta-seeds.de/de/

- ORGANIZATION: BAYER CROPSCIENCE LP | BCH-CON-SCBD-104792-1

ORGANIZATION

ΕN

Bayer CropScience LP 2 T.W. Alexander Dr. Research Triangle Park, NC 27709, United States of America Phone: +919-549-2599 Fax: +919-549-3929

Description

Soybean SYHT0H2, has been developed to be tolerant to two herbicides with different modes of action, namely glufosinate-ammonium and mesotrione.

Tolerance to glufosinate is achieved through expression of the enzyme phosphinothricin acetyltransferase (PAT). Tolerance to mesotrione is achieved through expression of the p-hydroxyphenylpyruvate dioxygenase (AvHPPD-03) protein .

Recipient Organism or Parental Organisms

The term "Recipient organism" refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas "Parental organisms" refers to those that were involved in cross breeding or cell fusion.

BCH-ORGA-SCBD-10453-6 ORGANISM GLYCINE MAX (SOYBEAN, SOYA BEAN, SOYA, SOYBN) Crops

Point of collection or acquisition of the recipient organism or parental organisms

Cultivar: Jack

Characteristics of the modification process

Vector

pSYN15954

Techniques used for the modification

Agrobacterium-mediated DNA transfer

Genetic elements construct

ΕN

EN

EN

Introduced or modified genetic element(s)

Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.

BCH-GENE-SCBD-105196-2 Leader	FMV 35S ENHANCER
BCH-GENE-SCBD-105197-2 Leader	CAMV 35S ENHANCER
BCH-GENE-SCBD-105606-1 Promoter	SYNTHETIC MINIMAL PLANT PROMOTER
BCH-GENE-SCBD-104820-3 Leader	OMEGA 5' UNTRANSLATED LEADER (TMV)
BCH-GENE-SCBD-105608-1 Protein coding sequence Resistan	AVHPPD-03 GENE (OAT, AVESA) ace to herbicides
BCH-GENE-SCBD-100269-8 Terminator	NOPALINE SYNTHASE GENE TERMINATOR
BCH-GENE-SCBD-100287-7 Promoter	CAMV 35S PROMOTER
BCH-GENE-SCBD-15002-4 PHOSPHINOTHRICIN N-ACETYLTRANSFERASE GENE Protein coding sequence Resistance to herbicides (Glufosinate)	
BCH-GENE-SCBD-104788-2 Promoter	CESTRUM YELLOW LEAF CURLING VIRUS PROMOTER

Notes regarding the genetic elements present in this LMO

The enzyme phosphinothricin acetyltransferase in the two different expression cassettes are encoded by two similar pat genes pat-03-01 which is regulated by the 35s promoter and pat-03-02 which is regulated by the CMP promoter. Both coding sequences encode identical PAT proteins.

The avhppd-03 was codon optimised for enhanced expression.

ΕN

Southern blot and sequencing analysis indicated that SYHT0H2 contains, at a single locus, a single copy of avhppd-03, four copies of the pat gene, one copy of the avhppd-03 promoter complex, two copies of the 35s promoter, two copies of the CMP promoter, two copies of the TMV enhancer and five copies of the nos terminator sequences

LMO characteristics

Modified traits

Resistance to herbicides Glufosinate

Other

Resistance to Mesotrione

Common use(s) of the LMO

Additional Information

Other relevant website addresses and/or attached documents

? SYN-ØØØH2-5 - APHIS (English)

? SYN-ØØØH2-5 - FDA (English)

? SYN-ØØØH2-5 - ISAAA (English)

? SYN-ØØØH2-5 - OECD (English)

BCH-LMO-SCBD-105619-1

Further Information

Questions about the Cartagena Protocol on Biosafety or the operation of the Biosafety Clearing-House may be directed to the Secretariat of the Convention on Biological Diversity. Secretariat of the Convention on Biological Diversity 413 rue Saint-Jacques, suite 800 Montreal, Québec, H2Y 1N9 Canada Fax: +1 514 288-6588 Email: secretariat@cbd.int