

ΕN

Biosafety Clearing-House (BCH)

ENETIC ELEMENT (GENE)	BCH-GENE-SCBD-48073-
	LAST UPDATED: 05 MAY 2016
General information	
Name of genetic element	
Acetohydroxy acid synthase gene	EN
Alternate genetic element name(s) (synonym(s))	
Acetolactate Synthase (ALS) gene	EN
Abbreviation	
CS-ahas-ARATH	EN
Category	
Protein coding sequence	
Is this genetic element a synthetic molecule?	
No	
Donor organism	
Donor organism(s)	

Plants

Characteristics of the protein coding sequence

Name of the protein expressed by the coding sequence

Acetohydroxy acid synthase

Biological function of the protein

AHAS is an essential enzyme for many organisms as it catalyzes the first step in the biosynthesis of the branched-chain amino acids valine, isoleucine, and leucine.

A common mutant form of the ahas gene was isolated from a herbicide-resistant Arabidopsis EN thaliana which differs from the wild type gene by only a single base pair. A "G" to "A" point mutation results in a single amino acid substitution in which the serine residue at position 653 is replaced by asparagine (S653N)

Tests using the mutant isoform of the ahas gene showed that it confers tolerance to sulfonylurea herbicides in plants. The ahas mutant isoform may, therefore, be used as a selectable marker in transgenic plants.

Related trait(s) or use(s) in biotechnology

Resistance to herbicides Imidazolinone Sulfonylurea

Additional Information

Other relevant website addresses and/or attached documents

? Andersson, M. et al. 2003: A novel selection system for potato transformation using a mutated AHAS gene. Plant Cell Rep., 22: 261-267. *(English)*

? Sathasivan, K. et al. 1991: Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var. Colombia. Plant Physiol., 97: 1044-1050. *(English)*

Lee, Y.-T., and Duggleby, R.G. 2000: Mutagenesis studies on the sensitivity of Escherichia coli acetohydroxyacid synthase II to herbicides and valine. Biochem. J., 350: 69-73. (*English*)

? Acetohydroxyacid Synthase.pdf (English)

? Herbicide resistant forms of Arabidopsis thaliana acetohydroxyacid synthase characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants..pdf (*English*)

BCH-GENE-SCBD-48073-8

Further Information

Questions about the Cartagena Protocol on Biosafety or the operation of the Biosafety Clearing-House may be directed to the Secretariat of the Convention on Biological Diversity. Secretariat of the Convention on Biological Diversity 413 rue Saint-Jacques, suite 800 Montreal, Québec, H2Y 1N9 Canada Fax: +1 514 288-6588 Email: secretariat@cbd.int